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SOLUTION TO PROBLEM SET 2

1. RHK problem 24.18

Solution: For ease of notation, here we denote
the mean of any function f(v) of the speed v of
a gas molecule by

(f(v)

where n(v) (called dN/dv in lecture) is the distri-
bution of v. If this formula is used, n(v) does not
need to be normalized. With this notation, for
example, v = (v). Proceeding with the problem,

Urms = 1/ (v?) (RHK Eq. 23.15)
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The equality occurs only when ((v — ©)?) = 0,
i.e. all the molecules have the average speed v.

2. RHK problem 24.21
Solution: Using the notation introduced above,
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3. RHK problem 24.25
Solution:
n(E) x EY? exp (—E/kT) (RHK Eq. 24.27)
Erms = /(E?)
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The remaining definite integral Z has dimension
(energy)®/2. Since the limits of the integral are
not finite, the only available quantity with which
a dimensionful scale may be set is (3, which has
dimension 1/energy. Therefore the integral must



be equal to $~3/2 multiplied by some constant C':
2 /732 -3/2
C3-3/2
_ (=35)(=3)(es™?)
C3-3/2
_ 15,
= ZB

15
Erms: —pt
V2P
15
=/ —FkT.
4

4. RHK problem 23.17
Solution: In Physics H7B, all problems in-
volving numbers should be solved completely in
terms of algebraic symbols before any numbers
are plugged in (otherwise it is much more diffi-
cult to give part credit). Let
T = temperature of interstellar space = 2.7 °K
M = molar mass of Hy = 0.0020 kg/mole (RHK
Table 23.1)
N = Avogadro constant
= 6.022 x 10?3 molecules/mole
m = mass of Hy molecule = M /Ny
kg = Boltzmann constant = 1.38 x 10723 J/K
Then from RHK Eq. 23.20,
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5. RHK problem 23.33

Solution: Let

R. = radius of earth = 6.37 x 10 m

R,, = radius of moon = 1.74 x 10 m

GM./R? = g = gravitational acceleration at
earth’s surface = 9.81 m/sec?

gm = gravitational acceleration at moon’s sur-
face = 0.16¢g

Uesc = escape velocity at earth’s surface

m = generic molecular mass

N = Avogadro constant

= 6.022 x 10?3 molecules/mole

Mpuyq = molar mass of Hy = 0.0020 kg/mole
(RHK Table 23.1)

Moy, = molar mass of Oz = 0.0320 kg/mole
(RHK Table 23.1)

kp = Boltzmann constant = 1.38 x 10723 J/K
THyd(earth) = temperature (°K) at which rms
Hs velocity is equal to escape velocity at earth’s
surface

TO% (earth) = temperature ((°K) at which rms
O, velocity is equal to escape velocity at earth’s
surface

THYd(m) = temperature ((°K) at which rms Hy
velocity is equal to escape velocity at moon’s
surface

TO¥ (m) = temperature ((°K) at which rms Oq
velocity is equal to escape velocity at moon’s
surface

Then
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We use this general result to evaluate each of



the four cases posed:

m — Muyd
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= 7011 °K .
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At an altitude in the Earth’s atmosphere where
the temperature is ~ 1000 K, the preceding re-
sults imply that the rms velocity would be only
a factor /Tesc/T = V10 below the escape ve-
locity; because of leakage out of the tail of the
velocity distribution, little hydrogen would be
expected to remain. For oxygen, the rms veloc-
ity would be a factor ~ /160 below the escape
velocity, allowing that molecule to survive as an
atmospheric component.

6. RHK problem 23.37
Solution: For path 1, the work W done on the
gas is

W= / pdV (RHK 23.24)
path
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= —(12.5 kPa)(6 m®) — 0 + (20 kPa)(6 m?)
=45kJ,

where we have evaluated each straight-line seg-
ment by reading (p) off the graph, multiplying
it by the difference in V' to compute the area

under the line. Similarly, for path 2,

W = —/ pdV
path
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= —(12.5 kPa)(6 m®) + (5 kPa)(6 m*) — 0
=—45kJ.

7. RHK problem 25.16

Solution: Let

m, = (unknown) mass of vaporized material
(ice), in kg

my = mass of fused material (ice) = 0.15 kg

L, = latent heat of vaporization of water =
2256 x 103 J/kg

L; = latent heat of fusion of water = 333 x 10°
J/kg

¢ = specific heat capacity of water =
J/kg-C°

T, = temperature of steam = 100 °C

Tt = temperature of ice = 0 °C

T = final temperature of steam-ice mixture =
50 °C

The fact that the container is thermally insu-
lated means that the total heat @ transferred
out of the steam molecules is transferred into
the ice molecules:

4190

Q(lost by steam) = Q(gained by ice)
my(Ly +¢(Ty = T)) = my(Ly + (T —Ty))

_ Lf +C(T—Tf)
T = (T, — T)
=0.033 kg .

8. RHK problem 25.21

Solution: Let

@) = (unknown) heat transferred into sample
T; = initial temperature = 6.6 K

Ty = final temperature = 15 K

m = mass of Al = 0.0012 kg

C = heat capacity per mole of Al

n = coefficient of T? in expression for C' =
3.16 x 10~° J/mole-K*
Ma; = molar mass of Al = 0.0270 kg/mole

(RHK Appendix D)
¢ = heat capacity per kg of Al = C/Man,



With these definitions,

Ty
Q= m/ (RHK Eq. 25.4)
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=0.0171J.



